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SUMMARY

This study has been devoted to the development and evalu-
ation of a theoretical model of the proprotor on a cantilevered
wing, operating in normal cruising flight. This theory expresses
the wing and blade motion in coupled form, and can include any
number of mode shapes reqguired to describe the motion accurately.
It has been applied to the investigation of the dynamic character-
istics of the Bell and of the Boeing design. The Bell rotors are
gimballed and the Boeing rotors are hingeless, The analysis in-
cludes the frequency response to gusts and c¢yclic pitch, and an
eigenvalue analysis of the dynamic system.

Based on the theoretical results included in this study, the
following conclusions may be stated:

{a} The choice of mode shape (rigid-body mode or elastic-coupled
mode) affects the damping significantly. The dependency of
the damping on the mode shape can be estimated for the first
beam bending mode. The blade inplane deflection opposing
the rotor direction of rotation, accompanied by the forward
out-of-plane deflection, increases the damping, comparing it
with the rigid-body calculation,  The inplane deflection pro-
ceeding in the roter direction -of rotation decreases the
damping, The mode shape has little influence on the frequencies
of the system,

(b) The results of the frequency response are quite similar to those
of Johnson, in spite of the difference in the mode shapes. The
amplitude of the response is slightly different, since struc-
tural damping was not included in the present calculation, and
the meode shapes used were different.. '

{c) The analysis of the eighteen degree-of-~freedom system showed
that the higher-frequency degrees of freedom have small influ-
ence on the basic degrees of freedom.



Stresses or bending moments of the wing or blade can be
predicted from the motions of the wing and blade obtained from
this analysis. In addition, this analysis may be applied to the

development of an automatic control device to alleviate the gust
response of the vehicle,
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SECTION 1

INTRODUCTION

1.1 General

It has been recognized that the tilting proprotor aircraft,
one of the composite aircraft family, is a very promising concept
that combines into one aircraft the hover efficiency of the heli-
copter and the high-speed efficiency of the fixed-wing aircraft
(Refs. 1-3).

The typical tilting proprotor aircraft is a twin-engine air-
craft with tilting rotors mounted on each wing tip. Its configura-
tion consists of a fuselage, a high swept-forward wing, and an em-
pennage. The empennage has a vertical stabilizer and rudder, and
a horizontal staﬁilizer and elevator. The large diameter rotoxs
are three bladed. hinageless or gimbal-type rotors which are mounted
on the rotor shaft. The rotor shaft is connected through the gear-
box to each engine in the pylon attached at the wing tip. The con-
version system provides the rotation of the rotor pylon from the
vertical position to the horizontal position and return, in order
"to obtain the helicopter mode or airplane modeé corresponding to the
desired flight regime.

When the aircraft takes off or lands, the rotor pylon is ro-
tated to the vertical position to gchieve vertical takeoff or land-
ing similar to the helicopter. The flight controls apply pitdh
changes to the rotor to provide the longitudinal and directional
control corresponding to helicpoter rotor cyclic pitch, while the.
collective pitch controls wvertical flight and roll motion.

In high-speed flight, the rotor pylon is rotated-to-a'hori-
zontal position similar to that of the conventional propeller type
aircraft. The thrust is produced by the rotor, and the lift by the
wing. The flight controls.are provided by the conventicnal aircraft



control surfaces such as the elevator, rudder and aileron.

In addition to the above mcdes, various conversion modes
can be obtained. At that time the rotor pylon tilts to some posi--
tion between the vertical and horizontal, where it can be safely
locked. This makes STOL-type operations possible.

The tilting proprotor is exposed to a severe aerodynamic
envirconment including gusts, the wake of preceding blades, and
harmonic airloading like a helicopter. But its dynamic and aero-
elastic characteristics are in many ways unique; for example, the
large flexible blades with a large amount of twist experience sig-
nificant coupled out-of-plane (flapping) and inplane (lagging)
motion.

As described later in Subsection 1.2, seve&al years of ex-
perimental and theoretical analyses have been conducted to estab-
lish a fundamental understanding of the dynamic and aeroelastic
behavior. However, it is necessary to understand the aercelastic
response of this aircraft to atmospheric turbulence more adequately
and to predict it more accurately, since during the preliminary
design phase, vibration level prediction is required in order: (a)
to evaluate the fatigué life of the blade and wing, (b) to estimate
the ride qualities of the vehicle, and, if necessary, (¢) to develop
suitable gust alleviation devices.

Several design compromise concepts, which make the present
analysis distinct from helicopter aercelastic analysis, are now
stated briefly.

In order to obtain high hover efficiency from the rotor, it
is desirable to achieve low disc loading, in other words to use
large~diameter rotors whose swept discs reach nearly to the fuse-
lage. When the aircraft is operated in high forward speed axial
flight in the airplane mode, the rotor is operating at a high inflow
ratio (the ratio of axial velocity to blade tip speed). This pheno-
menon is very different from the helicopter rotor operation which



involves low inflow. High inflow operation requires a large built-
in angle of twist for efficient cruising. Therefore, significant
coupled out-of-plane (flapping) and inplane (1agging) motion occurs
in the large, flexible and twisted blade. This phenomenon makes

analysis more complicated.

The engines and gearboxes are usually located at the wing
tip to avoid transmitting high power through a long drive shaft.
This leads to low wing natural frequencies and possible resonances
in the low fréquency range. Also, the center of gravity of the
pylon and rotor does not usually coincide with the elastic axis of

the wing. Hence, this results in coupled bending and torsion.

1.2 Brief Survey of Past Work

A good review and an elementary description of the dynamic
and aerocelastic problems associated with the tilting proprotor air-
craft were given by Reed in Ref. 4 and Loewy in Ref. 5. In this
report no attempt will be made to repeat the reviews given 1n Kers.
4 and 5. The only references cited here will be those pertinent
to the problem being treated.

The possibility of propeller whirl flutter -- a dynamic in-
stability that can occur in a flexibly mounted aircraft engine-
propeller combination -- was First recognized in the late 1930's
by Taylor and Browne (Ref. 6}. It was not until 1960 that it be-
came a problem of practical concern -- with the appearance of the

turboprop aircraft.

Following the two fatal turboprop aircraft accidents, it
was established that propeller whirl flutter could have occurred
if the nacelle stiffness was severely feduced, for example by a
structural failure. Several generalized studies were conducted
at NASA-Langley. One of them was carried out by Houbolt and Reed
in Ref. 7; it gives an elementary and basic treatment of the equa-
tions of motion and propelier aerodynamics for propeller-nacelle
whirl flutter.



Because VTOL configurations have unconventicnal propeller-
rotor systems, whirl flutter was a major design consideration on

present proprotor aircraft.

The analysis presented in Ref. 8 is for a two-bladed rotor
free to tilt on a shaft with two nacelle degrees of freedom {(pitch
and yaw). No lag or coning degrees of freedom are considered.

The analytical method was compared with test results for an exist-
ing tilting proprotor aircraft (the Bell XV-3) and of subsequently-
tested scale models. They showed good agreement.

Young and Lytwyn in Ref. 9 present a very precise analysis
for the whirl stability of a multi-bladed rotor mounted on a nacelle
which has pitch and yaw degrees of freedom. Each blade has one flap-
wise degree of freedom. The blade mode shape is assumed to be a
rigid body mode shape. It was concluded that whirl stability is
pocrest when the nacelle pitch fregquency equals the nacelle yaw
frequency, but in this situation nacelle damping is quite effective.
There is an optimum value of flap bending frequency somewhere between
i.i and 1.53 {9 aighly stabilized whirl motion.

This analysis neglects {(as do Refs. 4 and B) the effect of
coning on proprotor aerodynamics, and flap bending mode shapes other
than the rigid blade mode used. Also, autorotation £light must be

considered as well as powered f£light.

In Ref. 10, Gaffey points out.that a highly coupled blade mode
has substantial flap bending even if the primary mode involves in-
plane motion. This occurs in the case of a highly twisted blade or a
blade operating at high geometric pitch angles such as a proprotor
blade. The analysis shows that a moderate amount of negative 63
(flapping angle at the blade root gives the pitch angle reduction of

the amount B-tan 33 if 8§, is positive) has a stabilizing influence

3
on proprotors subject to flap-lag instability at high inflows.

Preliminary design studies of prototype vehicles (Refs. 1l and
12) .as a part of the current NASA/ARMY sponsored tilting proprotor



research aircraft program give some results from dynamic and aero-

elastic analyses done by Bell and Vertol.

Johnson (in Refs. 13 and 14) derived the eguations of motion
for a cantilever wing with the rotor at the wing tip. He develops
a nine degree-of-freedom model which involves blade flapping motion
and lagging motion (each has one collective and two cyclic motions,
respectively), wing vertical bending, chordwise bending, and torsion.
This model is applied to two proprotor designs and compared with the
results of some full-scale wind tunnel tests. It shows reasonable

correlation between theory and experiment.

In conclusion, it appears that most of the investigative work
has been concerned with whirl flutter. The above review shows that
more knowledge is needed for the solution of tilting proprotor air-
craft dynamic and aeroelastic problems.

1.3 Objectives of the Present Study

The objective of this study is to establish a verified method
of predicting the dynamic and aeroelastic behavior of the tilting
proprotor aircraft in order to evaluate the fatigue life of the
blades and wings and also to estimate the ride guality.

The equations of motion for a cantilever wing with a rotating
rotor at the wing tip will be derived as consistently as possible,
The great complexity of rotor blade motion will be included by ac-
counting for blade rotation (i.e., centrifugal and Coriclis forces),
significant inplane motion, and the large twist and high pitch angles
at high inflows.

The resulting system of egquations, obtained'using modal
analysis, will be applied to the analysis of the two proprotor de-
signs (one is a rigid, soft-inplane type rotor and - the other is a

gimballed, stiff-inplane rotor}.

Finally, the eigenvalues and frequency response of each pro-
protor design will be determined to establish their dynamic charac-



 teristiecs; the results of the analyses will be compared in terms of
eigenvalues for normal modes (coupled elastic modes), assumed modes
{uncoupled elastic modes}, and rigid body modes, using Galerkin's
methed.



SECTION 2

THE EQUATIONS OF MOTION

2.1 Model and Coordinate System for the Analysis

The primary interest of this study is in the dynamic and
aeroelastic phenomena of the wing, pylon, and rotor of the tilt-
ing proprotor aircraft in cruising flight. Hence, the dynamical
system considered here consists of a cantilever right wing with
a pylon at the wing tip, and an H-bladed rotor mounted on the
pylon, as shown in Fig. 1. The model will be restricted to the
cantilever wing, since it is sufficient to obtain a basic under-
standing of the proprotor motion, and many such proprotor models

have been tested in wind tunnels.

Therefore, the aircraft rigid body motions are neglected
and the wing antisymmetrical mndecs are alen Aropped. The left
wing motions including the pylon and rotor are given by the
mirror image of the right wing.

The wing is assumed to have a high aspect ratio, so that
strip theory is used for the wing aerodynamics and beam theory
for elastic bending and torsion. Wing sweep and dihedral will
not be considered, but angle of attack and angle of twist (built-
in twist) will be considered. The elastic axis is assumed to be
a straight line. The elastic axis coincides with the y-axis as
shown in Fig. 2. The free stream vector coincides with the z-
axis. Therefore, the angle between the z-axis and the chordline
of the wing results in a wing angle of attack (positive nose up).
The wing motion (Fig. 2) consists of elastic bending and elastic
torsion. The deflection ﬁw of the wing elastic elastic axis per-
pendicular to the y-z plane is called vertical or beamwise bend- .
ing (positive upward).- The deflection Yo, parallel to y-z plane
is termed chordwise bending (positive forward). Torsion Py, is



defined as pitch angle change (positive nose-up).

A pylon of large mass and moment of inertia is assumed to
be rigidly attached to the wing tip. Therefore, the pylon motions
(Fig. 2} corresponding to the wing motions are defined as vertical
displacement r. along the x-axis (positive upward), longitudinal
displacement r, along the z-axis (positive forward), pylon yaw v
about the x-axis (positive counterclockwise), pylon pitch vp about
y-axis (positive nose-up), and pylen roll v about the z-axis (posi-
tive for clockwise rotation, when looking forward). The above py-
lon motions are accounted for at the point where the wing elastic
axis crosses the plane, parallel to x-Z plane, which includes the
rotor shaft. The pylon lateral displacement along the y-axis is
neglected as a higher order effect.

The pylon and the rotor shaft are assumed to be parallel to

the free stream in equilibrium flight (rx, r., v v_, and v, are

.
all zero), regardless of the wing angle of a:taci. g

The rotor is located at the distance h (Fig. 2} from the
wing tip elastic axis to the rotor-hub (positive forward from the
elastic axis). The distance h is termed the mast height. The rotor
consists of N blades, whose rotational speed 2 is defined as positive
if clockwise looking foward. The blade (Fig. 2) has out-of-plane
(flapping) deflection W defined positive for forward displacement
from the disc plane {upward in helicopter mode, while the rotor
shaft is vertical), and inplane (lagging) deflection Vo defined
positive for clockwise deflection regardless of rotor direction of
rotation. The lower case letter n means the nth blade, n=1,2,...N.
Blade torsion is neglected here,

The azimuth position ¥, (Fig. 3) of the nth blade is de-
fined as:



$. = Ot +v + ad, , (2.1)

where ?h is measured from the vertical and t is time. The
phase angle between blades, Awn is defined as

Aty = (n-p AT (2.2)
N
The azimuth position of the nth blade excluding the pylon roll

motion is denoted as

% = At + ad, 2.3

2.2 Basgsic Formulation for Powered Flight

The governing linear equations of motion are derived in
this subsection. A more complete and detailed derivation is

given in Appendix A.

The ations involve- u ns: v
equations A ten unknow n' Wnt Tyr T ,uj P’
L5

and Py iactually v and W Tepros: nt ¥ unknowns, ro2e-

ur'uw':w"
pectively, but for convenience they may be treated as one unknown
without inconsistency). The equations consist of three categories:
the blade equations, the wing equations, and matching conditions

between rotor and pylon.

The blade equations are complicated by the pylon motions
which produce the centrifugal forces and Coriolis forces. The
wing equations are derived from beam theory. - The rotor is rigid-
ly attached to the pylon for the powered flight case and, there-
fore, rotor motion is related to pylon motion; this gives the
matching conditions between the rotor and the pylon. '

(a) Blade Equations

2 o0+ (50, v 25

+.-§2—rz[{(EI)¢ -(EI),} ain Oy 006y arl]



2 (T2%) 4 .m{ W +7 4+ 20735 0nd,

—v i wo &, +2.Q.v"f)3'm<l,‘
+r i ain & } = (B), (2.4)

- oo} 53

3

+ 2. ?;ra [{(er) - (ED)p} aim 8 co0Bs S22 iﬁ]

g EU' 0 LX) N
A(T38) [ h - un - e mim

= (Pe]“ (2.5)

wnere
r running spanwise coordinate for the

blade from the axis of rotation.

6 angle formed by the rotor disc plane
and the blade sectional chordline,
uswally including built-in angle of
twist and collective pitch.

(EI)C bending stiffness in the blade sec-
tional chordline direction.

(EI)B bending stiffness in the direction
perpendicular to the chordline.

m spanwise mass of the blade per unit
length.

10



T centrifugal force at r expressed as:
. R
T= JQ?J' my dr
-
P resultant force per unit length in

the z direction on the blade (posi-

tive forward).

P resultant force per unit length in
the circumferential direction on
the blades (positive clockwise when

looking fowardf.

{ )n about nth blade.

The blade geometry is shown in Fig. 3.

{b) Wing Equations

o [{(E10 ointen + (ELals cove} e

- _g‘g,.[{(ﬂ,)c ~(ELaly} ain 6 006w _%u&]

+ My Uy + Sa'ﬁ,, = Fx i (2.6)

% [{(_EI.,,)C 00O A+ (Elw)g Mh’ew}
+ gz [{(Elv)c - (€ Iv)a}Mgwme'%‘yﬁ"]

+mww_w =Fz ‘ : . (2.7)

11
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where

BW

(EIw)c,(EIw)B

(6J,)

L{(QJ')%?} + Iw.P;. + Sot u-ﬁ" = Ma. (2.8)

angle between the wing sectional chordline
and free-stream direction.
wing bending stiffnesgss defined similarly
as for the blade,
wing torsional rigidity.
spanwise wing mass per unit length,.
wing mass moment of inertia about the
elastic axis per unit length,
static mass moment of wing segment about the
elastic axis defined as

5, = mS
where s is a distance between the center of
gravity and the elastic axis of the wing
and positive if center of gravity is ahead
of the elastic axis.
resultant wing force per unit length in the
x and 2z directions,respectively.
resultant wing pitching moment per unit
length,

The wing cross-sectional geometry is shown in Fig. 4, and
pylon motions are expressed with wing deflections as

12
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(¢}’ Matching Conditions between the Blade and Pylon

Me e - ""'g"[{(EIw) oo Gy + (Ela)y coo ev} _'32;;“']'&’“L

1& [{(EI-) (EI“)B m'mﬂw m@w%;r}’]

[SR m{% + 45 (""‘;‘:"‘ST-’)H'”L
[5 (=B #n &, +\JPPz)dy-] ' | (2.10)

Q’m

-+

OHE

—
—

32

ol

. X e
Mp 7 - 2 [{(ELa) covtout (=1udy sinil} WLgL

[{(em ~(ELa)g} oinbyo0Or ?;;;r]

l

+ [J m(z + “f)alr]

[J (BB and, + 4 B cond,, +'Pz.)dlr‘] -(2.11l)

™M M=

L 3y + o ovtm e ice 53]

_[{(EI.,-) ~(E1y) jme'cme, g;‘"]‘d L

+z~ f {(ﬁ"'z)]) +ﬂY")}P+r(u&;¢n(§)

_2nr(u,.wogt) £ (i cood,, )}d,-] |
[f {ﬁ(l?acaqu UPz)-l-rx)qu.y-Pz_Mg"
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1 B Ui, cood — Wi Pamc},._}dr]

(2.12)

Ie, v, +[(c;rw) %] +Z[S {-—ﬁ(v..:w:lv@n)

+h (e +433) - 207 (W s ) —Y (W coo )
tEri - arty }er = Z{f{ﬁ(-f%m@-n

By

+»!pPz)- Wy Py ain@, + u B, sin
—vP cooq‘,.}dr]

(2.13)

a2y
"[{fEZgM: (EIhﬁgjaﬁén.SW' e%séfwm ]
Y=k,

ay*
+}i“ m(riy, + ri"'u)dr]
.-.-i [g (Y‘Pa)ah"] | (2.14)

T, - [{(em aitu + (E1), coven} -]

-

LY

Pylon mass

Pylon yawing mass moment of inertia
Pylon pitching mass moment of inertia

Pylon rolling mass moment of inertia

("), (") Time derivative applied to entire formula

in the parentheses

14



The above equations are derived independently of Refs. 7,
9, and 13, However, if the wing motions are eliminated, the
equations are similar to the basic whirl flutter equations derived
in Ref, 7 or Ref. 9.

2.3 Supplement for Autorotational Flight

Autorotation may be defined as the condition of flight where
there is no restraint of the rotor rotation about the rotor shaft.
Therefore, no rotor torgue is transmitted to the shaft, and no pylon
roll motion is transmitted to the rotor. This means that rigid body
rotation of the entire rotor about the shaft will be produced. This
rigid body rotation is designated as Vi (positive clockwise).

The eguations of motion for autorotational flight are almost
the same as those for powered flight. The equations: 2.4, 2.6, 2.7,
2.8, 2.10, 2.11, 2.12 and 2.13 are the same. In Eg. 2.5 V.. must
be replaced by Vpo In lieu of Eq. 2.14 the fact that the rotor
inplane motion is independent of the pylon roll motion in auto-
rotation flight results in Eq. 2.15 as follows:.

f:[ S:m (r2y, + v Ua) dr]

o) R
- L[ § oBe)ar] |
nat ] n {2.15)
This yields a new degree of freedom.

The angle in Eg. 2.1 is also expressed as

P, = Ot + v +4a¢, o (2.16)

in this case.

15



SECTION 3

AERODYNAMIC FORCES

3.1 Rotor Aerodynamic Forces

The rotor aerodynamic forces will be evaluated next. The
analysis is almost the same as in the helicopter blade element
theory. The significant difference is that it is impossible to
assume small angles for the angle of twist, the collective pitch
and the angle of attack of the blade operating in the high inflow.
The basic idea is presented by Young and Lytwyn {Ref. 9).

The section aerodynamic lift and drag forces 4L, 4D yield
the resultant forces Pz and PB as follows {in Fig. 5},

P_=dL cos ¢, - dD sin ¢,
.4 i i (3.1)
Pe = -dD cos":bi - dL sin ¢i
where ,
aL = 1/2 pacBUZG -
i {3.2)
dD = 1/2 p cBU CDO
and the angle ¢i ig defined as,
U
. -_P
51n¢i 5
(3.3)
coscbi =|U?|
U

The blade section inplane velocity (positive counterclock-
wise direction) is UT and Up is the blade sectioq out-of-plane
velocity (positive for negative z direction). Therefore, the re-
sultant air wvelocity is expressed as,

U= Up+us (3.4)

In cruise flight,
U, = fir

T
Up =V +v (3.5)

1s



where V is the forward aircraft speed (axial velocity) and v is
the induced inflow velocity. The induced velocity is very small
compared with the forward velocity V in the high inflow operation.
Therefore the induced velocity is neglected in this entire study.

The inflow ratio X is defined as the ratio of the axial
velocity to tip speed of the blagde:

v
A= oRr (3.6)

The section effective angle of attack is

a:eg“\'epp - -I% +9c ' (3.7)

the angle BB formed by the disc plane and the blade chordiine in-
cludes the angle of twist and collective pitch. Therefore

93""-’- 941-"' E.ns (2.8
where GAT is the built-~in section angle of twist of the blade,
which is zero at 75% span of the blade, and © 75 is the collec-

tive pitch to be obtained from the performance calculation.

Usually 6_75 is:

(Y ee e

The first term express the inflow at 75% span and BD depends on
the proprotor design to obtain the optimum cruising performance.

Pitch~flap coupling 6 and blade pitch control ec will be dis-

PP’
cussed later. Finally:

& = O + Qa5 + Opr ~m-l“‘t‘j'£" + 6¢ (3.10)

Uy

17



Substituting Egs. 3.2 and 3.3 into Egq. 3.1 yields

B ="'12'1°Caq U| Uy ex "‘5‘_‘ PcaCoo Ul

Ba=0 {ﬁ_‘ipc‘,Cn. Ui - -ll-pcsa UUBOf] (3.11)
where a |
» n = ———
sign (b ,ﬂl
= (3.12)

Next the perturbation method is applied to Eq. 3.1l1 to derive the
aerodynamic forces of the rotor in disturbed motion:

B =(B), * (ie‘) SUr + (ipl)' Sq,+(~"?&) S
Ps = (B), + (-2 ) Sur + (—7-’-29-) Sup + (2B 5 (3.13)

In these eguations, { )0 means those values are evaluated
in the eguilibrium state, given by the following expressions:

(Bpo= Lpcaa (nn)"[ot.t S X1,
+A Ol T -—C;—-‘-'--""Z'o]

(':%{)a"‘“'“l‘m[z“ﬂz'”(l- T +Ao¢.’t‘.]ﬁ

(—g%)oz—;— Caa'-qIR[ (|+C°‘)r:.+>\0‘sr| 2)‘5‘&?’

(38 =4 e (0RF [ 4% 5]

18



(B), = -%— FCea (QR)’[_ -%2.1'.‘3 AT,
X Coe 7, - X0 —c.] a

x(1+ S

2B} [_ Coo . _ Nt T,
(aul_)o,_Tpc‘alnla 28z, - RetoT -

2b ) _ L T, 1— S )z, - 42°G7§]fi
(;UPL | peaalQIR[ -7, + 3 (1—-F2)
(""P") | paea(QRY [-Xr -% 'ro] a (3.14p)
2% Jo =2 2 .
where
| ok
T = R = 122;3 .
& W ( 0, ) .as)
x = v/p - | (3.16)
x = |al : (3.17)

(3.18)

Olp = + 8. B
o EiNT s 'tﬂnt ’{}rl

The perturbation guantities GUT, 6Up and Sa will be con-~
gidered next. The perturbation velocities SUT and GUp consist of
rotor and pvlon motion and gust velocities.

The velocity at the position of the blade axis in x,vy.,z
coordinate {Fig. 2, see details in Appendix A) can be written as

19



X = "'QY‘AJ'/N.CL.‘ "'_()_'U-,.‘ ﬂiﬂkc)t'n-&nm:"-‘ln"';‘t

V), =V Veind, - Qv o0 G

‘3‘-‘ Q¥ cood, —ﬂ_ﬁg + r‘;erOGL.t —QY‘Ur-M‘!Ln

Z= Wy +Vvy --1"))’1,<:.¢J~:<[.,t -l-nrypmq.‘
. -
+Y'V3M4‘u + Qruy cood, (3.19)

Wind velocities at the blade element in the disc plane UT are then
obtained by applying the transformation matrix due to pylon motion
to change the x,y,z coordinate system to blade disc coordinate

system. Wind velocities’UxB and UyB are X, Yg components of the

B
inplane velocity of the blade in the Xg~¥p coordinate system fixed
to the rotor hub (Fig. 6}. Gust velocity as well as the aircraft

forward velocity is included.

Uss [ t v -, ] 2+ U
Uga = ~uh l Vﬂ ‘3- t Vg
Up ! Vo Yy I B A £ +wWi| (3.20)

Tangential velocity Un is expressed as

Ur = = Uyg sin e + Uye cood, (3.21)

After higher order terms are neglected,

Uy = rQ) -Ugeumd, + vg cood,

*”Gk.-;innimnqht--ﬂ,(' ;%‘OLu-¢ht+:éf<Zﬂ3qL)

20



Up = V+ws
+ :J'.._ + \'fz ——r;; cood, +r:')s Ao, (3.22)

Finally the perturbation velocities 6UT and GUp are given as

SU. = | RMe L 3 Ve Vi
T = -Q.’R v M(‘n_ + A V2 CG'OSL,‘ + Q
o

—%m¢n+x?}, - & (0 aind,,
+ :J#caoﬁé‘) tj(vp:am¢,l+u5.wo¢n)]_
S = ],O.IR.[R% PR —g— —'.t;,)P:t:cﬁ:ﬁl-_”L

R
o
S .
where + ‘x‘ *Mq""'.] (3.23)
.o 2
\ )= 50are)
= &/R- . | (3.24)

Pitch-flap coupling gives a change in blade pitch éngle propor-
tional to the flapping angle at the root. It is defined as

Wsa | . (3.25)

reo

(Bev).‘ = ~ %:_r._,,_

The angle &, is a design factor to yield the optimum pitch angle

3
gain to prevent blade motion instability. Blade pitch. control

consists of collective pitch control and cyclic pitch control.

(Bc)n = B} + O(t) cood, + 6,5tt) sindl . (3.26)
Therefore, the perturbation gquantity associated with the angle of -
attack of the blade is simpiy derived from Eg. 3.7 as

dor = Opp + B | (3.27)
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3.2 Wing Aerodynamic Forces

Wing aerodynamic forces are derived by the blade aero-
dynamic perturbation method. Aerodynamic coefficients are ob-
tained from strip theory (Ref. 15).

The wing element lift, drag and pitching moment (Fig. 7)
per unit span length can be written as

dL=-J,_-PU3w0~w°‘w Cw
dD = 4 P Uz Coey Ce
dMyz=2p Uy (Cuy + Co i) Cor (3.28)
These values are transformed to the x,y,z coordinate system:
dleood, — dD cin @y
L P g Un- Ot coo Py ~ 5 PG Coowr Uy win

Fx

it

i

Fr = -~ dD coody ~ diL snPe
= —L PCuCongUs o0, —L e Un i aindhy

My = dMiz +dL-Qcw
= dpck (Cu, + Coy, o) U
t4 P T aw Uy o (3.29)

where
2 ™ a2 - 2
Ur= (V4w +wy) + (G + ug)
Oy = é;w'+-P' - ¢%

Vg + g (3.30)

tan Py =

22



and e is the distance (nondimensionalized by wing chord) between
the elastic axis and the quarter-chord line (positive if the
quarter-chord line is ahead of the elastic axis).

Hereafter the small angle assumption may be used for the
wing aerodynamic forces because of the small angle of attack and
angle of twist. Then it is approximated that sin ¢w = ¢w'
cos ¢w =1, etc.

Perturbation velocities ﬁw' Gw, P,r Yg and WG are chosen to

express the aerodynamic forces. The perturbation equations are

then given by

o (0. + (252, e (33) (25
+( ) Uq +( 3&) w3 |

Fe = (F, + (25) & +(5E 3’:‘)&,4-(%
+(30), e + (30, =

My = (), + (350), o + (3), 5o+ (33,

-I-(%—"i*)nu‘ +_(§_&# wy ‘ (3.31)

This study is concerned only with deviation from the equi-
librium state. Then the steady state aerodynamic forces (F)or
(Fz)o and (My)0 may be dropped from the eguations without incon-
sistency although the blade steady state aerodynamic forces -(Pz)0
and (PB)0 cannot be neglecteg since they influence the pylon
motion.

‘Applying Eg. 3.31 to Eg. 3.29, the following expressions
for the wing aerodynamic forces due to wing hqtion are obtained
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M% = PC:V(CHQ"'Cm“G"o + qw“‘oé) "‘rw

O d

o 17T .
'%PC:'V(QN + awa) : uv}

o] Wy
+ o W
%PGVJ(CW*'QwE)J P

=T
[ PV (C,, + On2) - Ug
+ o Ys
PC‘-' V(Cu + Cﬂ.,y"o +a7(x"¢ e) I \ qu
) ' (3.32¢)

where the angle of attack in equilibrium state is given as

= O (3.33)
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SECTION 4

MODAL ANALYSES

4,1 Variatioconal Functional

In order to apply Galerkin's method the variational func-
tional is derived from Egs. 2.4, 2.5, 2.6, 2.7, 2.8, 2.10, 2.11,
2.12, 2.13, and 2.14.

S A RN T
E[$ffennen (3]
-5 [ { fee -ce:),]me. ooy T2 P ar]
- S L[ T3 e,
+“Z:I‘;TJ:M(W + U+ Y w’)dr]

3 3 [ (D~ ait ) A

+ b ~ R coodl )y 4 {05 2y
..(lJ',. c:rotln) l:i, =20 W, 1:9 mtl-n
-2 wineihi} ) ar]
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4 . e et (i

- 5_ °{(EI-.)C_m‘e.- +{EL)g M‘e,} ( 5 1) dy
1 (B - (1), ainds oot} Sv Sy

-LJ(G-'-D( )ldg
L .
-\"!2-5', wigr erd-g- + -2—S° m,u;:,,la_
-I-%.-j: Iwi;’:da. 4 [L S .&,wf:,dg.
e s b 1
t % IPE‘.JPI + '% Irr ;);
A3 [f B war]
e 5[ woer],
_- f(" Py st + \’pPz)dY’]“ Y

[ [ R(_w,Pemi..+%Pe;uo§€“+&)arf]“v;

9 JREICEE R
s vProind, + Brugcoed,
-?ehﬁf“‘}u}dr]hvﬁ_
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+i{f{ﬁ(-&»&£ +VpBe - WP ain

h=1

+ i B ain B -V BreooEaJdr]

+:Z=l[.

R
S (v Ps) dY’]n va
+ S: Fx Uy d
L
+f, R o

+ r M'él P,',.alﬂ_ : (4,1)

4.2 Free Vibration of the Blade and Wing

In preparation for modal analysis of the basic equations,
the free vibration of the rotating blade and the cantilever wing
will be considered. It is very advantageous to use the natural
frequency of the free vibrating beam to represent the quite com-
plicated stiffness texrms of the beam.

The variational functional for free vibration of the ro-
tating blade is derived from Egs. 4.1, neglecting aerodynamic
forces, pylon and wing motion.

w

o = - 3| 4 ce. ant0u 4D covn] (25 4]

el ard
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LS

4 fon v o (2505

Z"

-5 1 I“{(Et)c_-(ﬂ)a}maamea 2 —'5"“]
) ° "

.
_ L) J_ N
E.\[2 a {T ) ¥ T( )}dr]g .
N R .
+Z.[LZS m w4l +.Cf¢£)dv‘] T (4.
w1 . " _

Assume a series solution in terms of normal modes which express the

coupled motion of inplane and out-of-plane motion

Wi W | |
. =&Z{ ’ }%’,‘J(ﬂ (4.3)

A V(7

Substituting Eq. 4.3 into Eg. 4.2 and applying Lagrange's

equations as follows:

3 (3_1.5)'_ 2%k =0 (4.9
dt \ 3%, 2% .

yields

f[{(m‘ a6 +(EU‘ 95}( d\r‘ ( ar:

{(e’::)c codOg + (E) a6 } ( dr;) ( "Sfj) -
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%’{(EIL._ (EI},}MGameg(_ﬁ% _é%-.f d;%{d:—dd'—gf

dW: dw; dV: 4V 2 T
+ T o ‘;f +T T +QmV~‘{,]dv’
“’\,{ m(wtw,-rv‘v)dv‘ (4.5)

where Rj denotes the jth rotating undamped natural frequency of the
blade. Simplification of Eg. 4.5 will result from use of the ortho-

gonality condition (Ref. 15) of the normal modes which is expressed
as

4 .
R L m (W + V)

_ J=t
I m (Wi W + ViV )drs
-]

o AL (4.6)

The amplitude of the mode shape is normalized to unity as

Lm.(w + V) dr = | (4.7)

Hence, Eq. 4.4 results in

f[{ (ET), s’y + (E1)g cod €y ( dr‘-)( drz

+ {(E-Ue_ 09’6 + (ET)g pisc ]’( df") dr*)

dri dri dr* dr

+ {50 ), [ ain Oy cov6a LW LY ¢ LW V)
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. . Ve : .
L I R - S A L

2
AL J=1
0 J# i (4.8)

In the similar way the free vibration of the wing will be analyzed,

treating the rotor and pylon as lumped masses at the wing tip. The

wing deflection can be expressed as

| 5@
Sj(aj a,j(t) {(4.9)

1 %@,

Then, pylon motion is described by

(4,10) -
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where

I

- d3 d |
c}"z'
db:
dy

¢, - ¢
_4a8%, A%
a% . . 9% (4.11)
! a4 ay ]
Qa, @y
! G. &)
{cu35== co
a8

The wing coupled modes are normalized as

ol 2 x |
g., {mw(dj +35) + L9 +2Sulg_‘4>d:}dg

e s o3 (455 478 43 (48],

+ NMB[(z[,-Jfng)‘ +_{‘(%§Ly t 3J-_’]

J=L

SR NCIRL I

(4.12)
=1
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Hence,

(:[{ (Ela). 2O +(Elu), m‘ew} ( d 6‘)(———3’—)

{ (L. o + (T 2inn] (i‘;ﬁ (£3)

\ ey ) L A8 LE A3
+ X i(Elw)c ‘(EI'I’)&} Me'me'(daz dgi + dUt dﬁ")

+ (GJ) dg 2y ] 44

1 0O L*J ' {(4.13)
- where AJ is the jth wing undamped_natural frequency.

4.3 The Variational Functional Described in Modal Form

The simplified variational functional expressed in terms of

natural frequenéies is

33



- iZ W (4 ;‘,4,‘)} (3 2N
- 2L (D g\ (3 G &) oo
-2vQ) (% W, z,s)(% ,;p‘. at,_i):;.._-‘fn) d.vf']

L8

%; (Aral) +} 3 & + wal3aa) 58
3 [[azwggad,

+ i‘[ [PV gy ar),

may -

where W denotes the work on the wing done by rotor asrocdynamic

WB
forces and Wﬁw the work on the wing done by wing aerodynamic

forces. Detaills are discussed in Subsection 4.5.

The principle of virtual work 1s applied to Eg. 4.1l to
obtain the modal equation for the blade and wing.

For the blade the modal equation can be éxpressed as

Qo + X By + Vi - V(U2 + & 3}) sindh,
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+ng-‘§- - B Vo Vﬁmﬁfn + Wi Vy adedae

. ;}qun £ 2800W, vy comdy,

- MJJ

+ 20 Wy vp sindy

{4.15)

wheres
- R -_
Wiy = R""[ S'-vn‘r“wdar]
(L=0,1)
(.
v'.:j' = Q’_l—[g"mr‘lv;i-dr]
(¢=0,1) (4.16)
) ‘
Poj = [ Bjav
(4.17)

R .
Pq; ==S Pz Wy ar

For the wing modal .equation can be expressed as
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=W (g~ (%%L; W (g5 ot,) <¢:J@.

- 20.w;5(3,, a:o‘»‘u)(i?),ﬁ_ - 20 (gt GMH]u

=f +9: (4.18)

where f denotes the loading due. to the rotor aercdynamic forces

derlved from the work WWB' and 9; the loading due to wing aero-

dvnamic forces derived from the work WKW'

4.4 Rotor Non-Rotating Coordinate System

4.4.1 Rotor Non-Rotating Coordinate System

The equations of motion 4.15 and 4.18 of the blade and wing
have periodic coefficients because of the appearance of siny, and
cosy, . To avoid difficulties due to these periodic coefficients,
the Fourier~type coordinate system will be chosen to describe the
motion in the non-rotating system instead of the rotating system
{Ref. 16).

(a} PFor the hingeless rotor, the Fourier coordinate system
is described in general as

Gy = Qjo + %[Q‘jcmm(md’n] +G_~j,(_)44:9|(m4,t)]

"
+ QJ.; (1) (4.19)
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where Qjo is the collective motion, and Qj are cyclic

Qjc(m) s (m)
motion of mth order, defining tilting or warping of the rotor

is differential collective motion {only -occurring

jz.

plane and Qj

U

for even N-bladed rotors}.

Since many recent proprotor designs iiave three-bladed ro-
tors, this study is concentrated on-the odd N-bladed rotor model.
Therefore, the last term an of Eg, 4.19, the differential col-
lective motion, will be droﬁped hereafter, 1In addition to this,
the higher order terms Qjc(z)’ st(z), "’Qjc(m)’ st(m) are not
coupled with pylon motion. They represent internal rotor motion
and usually make only a small contribution to rotor motion.

Therefore thoy are also truncated in this studv. Hence,

%'U = Qs + QJ&“'“‘J’H. + QJ, YR B (4.20)

By inverting the system of Dog. 4.20. the new dearees of

freedom of the non-rotating systen can be obtained:
. I .
Cb ‘_'?I-z: SEJ
Qe =T 2, Puj oo
-2,

Gs =2 E Gy einhh e

The same approach may be applied for the rotor generalized force .
Jue to periodic aerodynamic forces, ' o

N

'(fky 4‘f%§)° = “ﬁr'gg (laﬁ.i'fzg)
'(Paj + P&j)c-= "%" '\:1 (PQJ +P!J} C"°4‘!
-(.Pej + PzJ‘)s = -%; é (BoJ -+ P‘Ei) ain - wan
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() TI'or the gimballed rotor, special care must be taken
since it has both collective mode shapes (symmetrical modes with
clamped boundary condition at the root) and cvclic mode shapes
(antisynmetrical mode shapes with liinged boundary condition),
while in the hingeless rotor case both collective mode shapes and
cyclic mode shapes are the same. Therefore, collective motion is
described with collective mode shapes w?, V? and cyclic motion
with cyclic mode shapes W?, V?.

W, (W W | _
| =  Q: J : Q. 5 acech, (4.23)
w) 3l G"*{\G"i(‘;’f“’““"“’ o)

This expression is consistent with the derivation of equations of
motion up to now, if mode shapes.wj, Vj of the coefficients of the
blade collective motion are replaced by the collective mode shapes
W?, V? in Ey. 4.15 and 4.18, and those of cyclic motion are re-
placed by the cyclic mode shapes Wg, v, Therefore, the derivation
of equations of motion hereafter is based on the hingeless rotor
case, and those equations can be applied to the gimballed rotor
case as stated before without confusion. The coefficients asso-
ciated with collective mode shapes are denoted by superscript 0

and those with cyclic mode shapes by superscript c.

The truncation of higher order terms and of the differential
collective motion in Eg. 4.19 is also applied to the gimballed ro-
tor case by the same reasoning as for the hingeless rotor case,

The orthogonality condition for the gimballed rotor case is
different from the hingeless orthogonality condition. The entire
rotor system including periodic functions sinwn and coslbn must bhe
considered. For example, the orthogonality condition between the
collective mode and the cyclic sine mode is described as
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R ° .
i [ M{WJ. W; AL-.‘\(-,‘ + VJ \(JFA-«-.‘J-,,de’
T A

A [ mewpns s gyyarf{F st
-0 (4.28)

“s e

Since wh is the phase anqle defined in Eq. .2.3, the summation over
n=1, N of simpn bacomes zero.

4.4.2 Pitch-Flap Coupling in the Non-Rotating Coordinate System
Pitch-Flap Coupling is expressed in Eg. 3.25 as
AW
Y=o
The substitution of mode shapés into this expression
gives
dw :
9?1-"2[—-;—;‘— WS‘;{QL.+QHMO4“+Q¢3M4KJ :
[N r-h
=2, Ko {Qiot Queesnden + Qs .a;-gd..} (4.25)
[
where
Ko: = — AWE S 4.26
P = m (4. )
Ay Lt 1 3
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For the hingeless rotor case considered here, Kpi is always
zerc because the slopes of blade mode shapes at the root are zero,

due to the clamped boundary condition.,

For the gimballed rotor case, Eq. 4.25 is rewritten as

QPF= Z[K:; Qin + K:‘ (Qf_c mdu

“

+ Qs Md'n )] (4.27)
where
K: = - dw: WS
t AY |yue 3
K AW tanm 9. {4.28)
s = £ .
P dv* rao 3
From the definition of the collective mode shapes, Kpg is
zero. Therefore, for the gimballed rotor case the pitch-flap

coupling contributes only to the cyclic motion of the rotor, not

to the collective motion.

4.5 Aerodynamic Forces Described in Modal Form

4.5.1 Blade Aerodynamic Forces

From Eq. 4.17 blade aerodynamic force is described as

®
Poi +P’J =, L (Pev,:j +P3V{j)ddf (4.29)

The application of Eq. 4.22, accompanied by the substitu-
tion Eg. 4.21 into Eg. 3.13 yields
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+ A G?J'}—r‘j— + Gy Z KpiQuc

+ Gy ac] (4.31)

(8 +By), =40 [ 6 Q,
82eiq. -6 —Eegf}?
NG+ Gm; ﬁg
HX Gt + Gy I Kp Qs

t+Gv; G,,] _ (4.32)
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where

o2 R R:
+ Fzz%)dl

! X X7 .
..—..f (;:O,M + F-”M.k +52.35&
&

1
Grj=] (¥ +Fa ) n
) ' v .
Gly =J° (ro:"fi,— + ¥z, %l‘ldl
| ,
;= X W,
GEJ L' (Fé: = 1 Fkx, —,‘2“")0‘1
¥
7 .
“f e 4 Ry aa

) | A .
Gy = § (o + 7y Yo (4.33)

o ne /L naCa)
For = (32)./[4¥m B
Fea = (AP; /[%"Ib LQ!]
Fos = (38), / [$ (]
Feo = Pg,P/[ rTo _o.):]

Far = .?...x.) /[ 1y1, lnl]
Fea= (2K) i oy

Fea = (i_'g‘),/[—; tTs %‘] (4.34)
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4.5.2 Wing-Loading Due to Blade Aercdynamic Forces

The wvirtual work done by &ing loading due to blade aero-
dynamic forces is described as

§W,, = [ Sn S Sy W Sv,.] x
By sk, + B
| vp Bpsienth, 43 Bo conchia+ B2
~ 4 (BocosE, - WR) A v + B s &, +R R conth, ~ Buhicosd,
A (- By oied, 4 pB) - Bo T aimh, + B aived, ~Byreoe &,
v % |

e

Ji4.35)

The application of the blade mode shapes and non-rotating coordi-
nate system gives

=]
Srg Tr [ |, V"g,é‘
2] o7 K
Swoeatf Vel ) e[ A 0T re[ AT VR
Svp ' Ve Vi |
vy L v Ve Ve }
Q
+ 3 <[ad]{a + 5 «[a2]{ar)
uesr )
BV
* K[A?] B }
{ 8
O | : {4.36)
BQSJ i
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where ¢ is an integral operator defined as

g
K = -—--KI d'l
2 5‘ .
and integrand matrices a;e
f tr o | e {
a3 +_9,_.___|_._F3_1.1___E.______J,
N Fay |
| 1iFa | o ]- 1 Ex(-Feat Fz.) 1
L O ! 4 ] O |
2
{____*_0_ ! ".LF'g,
l';'zl(pe:—"_zu)_}_ o |
[i(ZlFa.{-x‘FI.JI o
E © | ‘!tF:lJ
o | l _3 r
%4__34__2”““;“3_%_:&_1_97
| O o 0
) — Yt A= — =
a0 | o 1EFa-3R)| Famrshe |0
L0 -3Ma ) REx-3m)o
hi) , O : (o] f O I O‘
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O
%ﬁﬁ

Q

(8]

|
o1 Em R
o A
Vo TW A TRy
‘Q‘Fm"'—ﬁ":ﬁ L _('f_é mmmmm .}

K(z‘ Fon +1‘:‘—’-'F91) : o _}_ O J
(4.38¢)
[ 1 | |
|
° _13(EReER) | dwte
R o S N
| :
! 1 (- ) | e R R+
R - S U PR
0 ;—nﬁiﬁﬁ#&%: ﬂ%-zs
: "‘Ji -‘B.KPZ F‘j o
——— e —— | — ————— —— -
o= v w: |
SRR R | L[S, W
O | ~dwpxFr, | =
| ax(Bw Brg)
| | - 3
I
____L___ | %Ky‘,,paa
_____ — I
kpi ey | o I o i
. (4.38)
FFu | © | © LO t o J'*%ﬂ
——————————————— = — -
o 2o _3F - R LI
LT T T e —— - —
-;:x- Z| 11_--;-‘;{\:5 I o | © _}-S?:'{-FQ, | 3 Fes
B . S . S e 1 U Sl
L N R R LN P T
L o I o | X xXFea I akey | o X s |
{4,38e)



4.5.3 Wing‘Aerodynamic Forces

The virtual work done by wing aerodynamic forces is ex-

pressed by

Swﬂw = {SU' S\J" gPﬂ}
(4.39)

The displacements u . ww’ p, are described in terms of the mode

shapes as

Uy } Q,
We | = [S] - G | (4.40)
Pe / dn - '

where
P WG - - - wd
[S]=|30 3@ ... smf
P8 (Y - - - P (4.41)

Then, the substitution of Eq. 4.40 into 4.39 gives
]

W =1 {8, Sa, ---Sa. a, a,
| [ART{ %} + LA o

- é- [« 1

54y

o S
+[A]) oy
Qe ) (4.42)
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where

[

[ A

[

™

Aa

L

laf

1= 7k, (STl [s] 4y
1ot [ (ST DA 514

([ [sI™[Ad) g

(4.43)

The matrices A_, A and A, are derived from Eq. 3.32 as follows:

[A] =

47

| -ipcVae(i+ S2) | paVaene,

__________ e e
~L PGV Guoty, _i P&V Conn 1©
T
L PCAV(Crt G T) | PR V(G t Cuti, (g
] -+wa°ﬁn“2?) :
E|
[ X 1 ‘ | 1 2 ]
0 | ¢ } 2}’Cw\f G
_——:——H__—_‘] ___________
e e L R
0 : (8] { -lf3Cir‘J‘(Cuu'¥amﬂ53'
l g

L

{4.44a)

(4.44b)



o G" ' l
ireeVa(tST) 1o ! paVaack, |
————— ;—“‘“‘—r“ﬂ““‘—*‘“”“|
[k}z. —%PGVG‘UI‘, I o L-PC"‘\F o .lI
_LpaV(CtGB) | O | PG VG HCA, |
| E b+ Qe mT) i
Lo | 0! o
S R
oloto
i e
o1 o 'o
: ' ¢ i {4.44c)

4.6 Final Equations of Motion

In this part the final equations of motion will be derived.
They will be expressed in general format, so that any number of
mode shaves both for the blade and wing can be chosen to describe
the rotor or wing motion as accurately as required,

4.6.1 Eguations of Motion in General Format

The substitution of Egs. 4.20 and Egq. 4.10 into Eq. 4.15
gives the jth blade modal equations of motion. Note that time
derivatives are normalized by rotational speed as in BEq. 3,24,

(o} + & [Jle) +[ve o}
M)+ BLEHS = {8} s
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where

~

O

I.......-._.;‘
I

o O
0 2
-2 0

(:£¥5‘+ Eiﬁ)e

i
(:E%j 4’Eéi}¢
(?ﬁ'+Pﬁ351_

0
o
(X))
o O
*QTVQT —\qy
Wij -E Vg
o o
2ij o)

oy

and the matrix [T] is defined in Eq. 4.11.
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Substituting Egs. 4.21 and 4.10 into Eg. 4.18 yields the
wing equation.

For the wing mode

op

(3} + alws){e) + [walle
e ([ M1 [0 (o)
-a [T [efixl o) - (¥} s

where

-

351 {66, -} ‘P.! 2351
2y A kT |
[Wa];= NI fﬁ'} " ol {33 " J""—

¢ diagonal

F [
O . matrix
: .

(4.49)
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Loading matrix{F}for the wing consists of aerodynamic
forces f., due to the rotor, and aerodynamic forces 95 due to wing

motion itself.

JF}= ) > | | (4.50)

Similarly, aerodynamic forces are derived.

For rotor aercdynamic forces

‘ | (PQj "'sz)o
ﬁf_).’—'{ (Ee_, '*sz)c
\ (ngi*'fka)s

z(al]; {of + zlal] o
+ (423, (7] o} + [AZ] [7)a)
1o

i

{8}

where
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‘i,-,: 0
G Gj: 0
o ..
o Gb‘ J
Kei Gy; o) o
O ¥<pi‘s&g ii-q&&
© "'n.. GJ’C Kpg G-!! i
0 |
Sz
..g_gy —G"?_}'
(;Qj —iiéﬁ; 4
o o, o |
-XG;Q’ o o
o) 36;5 o |

(4.52a)

(4,.52b)

(4.52¢)

(4.524)
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o o] A 65. 6?3 0 0
{0 —
{Ae J= +¥5] 0 2 Gg‘ 0 | o 65 o
_'S.GE,- o 0 o 0 &y

- : g 4
{4.52¢)

The excitation vector {e} is expressed as

.ng < llg <,§

e,
[~
L
i
[

? . (4.53)

Bic |
\g ELS |

£

For wing asrodynamic forces

From EQ. 4.50 _ | | _
{F}:‘ {f"'s} L S ase

- Loading to the wing due to rotor aerodynamic forces fi cor-
responding to aj is expressed from Eq. 4.36 as
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(5} = < [PT A [T} + < [T TAS] e}
+5 <[] [AG) {G}
+3 <[] ag) {a)
+x [T] [A(:] {e} (4.55)

Loading due to wing aerodynamic forces 94 is described from Eq.

{3} = [Aa.] lG} +[Ao.] } Ac ] {e} (4.56)

4.6.2 Equations of Motion for Nine Degrees of Freedom

For a typical case, nine degrees of freedom are considered
here. These degrees are rotor flapping motion {(collective flap-
ping motion QlG' cyclic flapping motion Qlc and le), rotor lag-
ging motion (collective lagging motion on, cyclic lagging motion
ch and st), wing vertical bending motion ar wing chordwise
bending motion a, and wing torsion ay.

These mode shapes are natural modes, therefore they are
coupled.

The final equations in matrix form are

[A] {:} ¥ [BH J +[C] {z] [o]4 j (4.57)
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where

3 (s
Qe g
@is ‘ :; _
|«) = Qwn {e}z ~ (4.58)
i Qx /. 1 6
1 Q'-IS : 9.( 1
i Q, 7 _eis
\ o
\ ",

The coefficient matrices [A], [B] and {C] are 9 x 9 matrices,
and [D] is a 9 x 6 matrix, as given below.

PRI EER
{15 O o

[ S N A
A - (2O {1 | b |
[ IR A B N
[T U O O O O
e (1 |

R | (4.59&)
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_‘_jﬁ?i ]
B AL

“lAgl H‘]* -

Jor I N D D
ErAn It“:; JAi‘IL'Ll

N _ul__
l [ Tag) <t wa) <At |

l ‘ | 1 ,"[[A(:] J (4.59¢)

56



1

I
|
s

[D] =

I
I

I .
il
L

|

|

— = .
x[1]

l l (4.594)
4.6.3 Equations of Motion for Nine Degrees of Freedom

"‘@
5

with Uncoupled Modes

In order to have a better understanding of tilting prop-

rotor dynamics, a simple special case was considered. This case

is based on the assumption that the mode shapes are uncoupled.

Therefore, rotor motion is expressed as

{2} = l‘;i}(gu“' Q,c 2oo ¢, + ;A.s i)

{ N, } (sz'\' &ac mq‘u"\' Qs st ) (4.60)
2

The wing motion is also,

Wet={0o P& +{ 31 & t10 7% (4.61)
Pw 0 o P,

The substitution of Eg. 4.60 and 4.61 into Egqg. 4.59 gives

the following matrices for the same nine degrees of freedom
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equation as Eq. 4.57.

[A] =

O | G 0 0 O O O [-W.%
0 0 | 0 O 0 o |(ww| 0
o | ol 0 L o | of-wM o | o
O 0 0 a | o o R o
O 0 Q| O 0 I |e2 o |AwE
o o | o |-wag o [-3vd o) 0
'\J.; N ,d '1
Nwﬂﬁ O "5_‘ lmc O ”T'e-uz“’g; O O l O

O |-y O | o | o HEwg O | o | |

(4.62a)
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New symbols will be defined below, but all these symbols
can be derived by applying the uncoupled mode shapes to the general

equations.

Pylon Motions

Wa = B| at ‘d=l—

W, = 3. at B=L.

WL = %% at 5-.-.[.
g =&, at Y=L
W = ﬁ% at y=L (4.63)

Therefore the matrix[T]in Eq. 4.10 is described as

W 1
= © o
o %%' (o)
[T]=| o W o
o o &
¥
i -Ws o O ] (4.64)

Aerodynamic Forces

{a) Rotor Aerodynamic Forces

1 W‘-

Fap =~ 43T { (Fu) ax
}

Fjp' ‘-'-5-"“1“1YIB Sa (-F-Zl) 1‘;1&' A%

. l \
Liz =-z¥Ta {_ (Fe;)_‘ﬁn_}ﬁ.dx
Lit =-x¥Ta S, (Fe) —%:- Ax (4.65a)
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F"P“ ¥ S:(Fnj-—dx

Fra=-L¥Ts { (R M xde
Fep =-Lon lF—.-z)l"—"xdl
Fop =380 § CFu) W

: 1
P =-1¥T, g,(ﬁui%dt

Py = - 5L {(r g xdx

bog = -4 7% | (Ra) i dx
Uy = - T S:(Feu)%z-xdl
g = -5¥Ts [ (R) N ad
Loj = -3 TTa S:(Fo;\y&di

LF@f“ T S (Hm)qudl
Lrg = -1, (' (ron) A x
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where in general F,L expresses the forces corresponding to the

direction of flapping motion and lagging motion respectively Sub-

scripts 8 and ¢ describe the mode shape contributions to the aero-

dynamic forces; T and P show the derivatives for the perturbation

expression with respect to inplane velocity U

T'and out-of-plane
velocity UP;

superscript + expresses the moment at the blade root

fo= 2T, (R dx
Fr=3¥l [: (Fa)du ¥i=1 Ha&:(FsJ xdx

Fpe 40T, (| (Feadx Fp=4 ¥l f: (Fea) X421
Fo= 3 ¥Te | (Fe,)dn

Fo =4 rIsS_‘(F;,)‘xd':k
Le= 4 ¥Te {| (R}t

o= v § (R

br=dv% ) CRoddx e Lot § (Ryrds

o=+ ¥Isf (Rouydx = 28Te § (Ra) 1dx
o= }¥R{ (1:9,)411, L5 = dvIa S‘: (Fos)XdX  (4.66)
<o, = -~ [LGR- & ouy)

’ YW !
cq, = *M[_ Lp _._‘%s le -ﬁfw,_-_\

CQ;I = —M{ F w&f F+ '\\T: w;]
Céy, = _.N{\':F(%] 4.-%{42_ L-r+\’-‘-'r+}(w3]

0

D-

v
n

-N [ LR(E-F) W E)
N[ R BME]

O
P
w
I

(4.67a)
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Cépo-N{ERC-5 + RIEWL)
Cayp = -N {% * RZLT ""‘-;*} ix]

Cay, = *“[{Fb‘:ii"“} gil
Camn = -N[ BCR -2 1) (wiy ]
Cay = Nl (3 FF )W E]
Cop= -NL-257 8]

Coy = -NL R (R -2 L0EY]

Wing Aerodynamic Forces
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where Aﬁ‘_, Aw K and AG.. are components of matrix [AW]’ [Aw],
ij 13 ij
and_[AG] respectively in Eq. 4.44.

Pitch-Flap Coupling

The pitch-flap coupling coefficient is expressed as

]

_ dsd
Ke - \m tom S, (4.69)

The rotor collective mode shape has zero slope at the root. There-
fore, pitch-flap coupling appears only in cyclic motion.

Natural fregquencies

AB : blade flapping natural frequency

AC : blade lagging natural frequency

'Al : wing vertical bending natural fregquency
A2 t wing'chordwise bending natural fregquency
A3 : wing torsion natural frequency

4.7 Eguations for Gimballed Rotor

As discussed in Subsection 4.4, equations of motion (Egs.
4.45 and 4.48) are applicable to the gimballed rotor. The signi-
ficant difference between the gimballed rotor and the hingeless
rotor lies in the application of the blade mode shapes to the
rotor motion. The gimballed rotor has independent collective
mode shapes for the collective motion and cyclic mode shapes for
the cyclic motion. Therefore, the above distinction is found in

the following matrices:

For blade eguations
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SECTION 5

NATURAL. FREQUENCIES AND MODE SHAPES
OF THE ROTOR AND WING

5.1 ' Rigid Rotor

In order to obtain the natural frequencies and correspond-
ing mode shapes of the free wvibration of the rotating blade, the

equations of motion are derived neglecting aerodynamic forces and
pylon motions in Egs. 2.3 and 2.4.

% {(EI,)c o8y + (El)y m‘ﬂa} a\r'*

+ & [{(en), - (D, s o088 22|

-5 (v 2E) +mi =0

£ [{cenl. 0 +(ena i 00 SE]

ar:
+ -gr’-'-, {{ (1), - (E1)g | ainOg coobs —f%}

*e 1
-W(T—g%-)+mw‘-mﬂ\-&=0 {5.1)

These equations of motion are rewritten as a usual eigenvalue prob-
lem to find eigenvalues and/or eigenvectors.

Boundary conditions for the rigid rotor are
at the root:

= D _
w, = Sr =9
-1
J. =0 > ﬁ.C)

(5.2)
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at the tiE:

g Fhax,
Sv =0 -——-—ar‘=°
P _ Fw - ‘

As a typical hingeless rotor, the Boeing rotor is chosen in this

study. Mass, stiffness distributions and built-in angle of twist
are shown in Fig, 8,

Nonrotating natural frequencies of the blade are shown in
Fig. 9. Almost no influence of the collective pitch change on
the natural frequency is found in the case of the rigid rotor.

In FPigs. 10a and 1gb, the first and second natural fre-
quencies of the rotating blade are shown versus rotor rotational
speed and inflow ratio. Inflow ratio is related to the collective
pitch as described in Eg. 3.9, At normal rotaticnal speed {in
this case Q@ = 386 R.P.M.) the natural frequency variation due to
collective pitch change is shown in Pig, 1l. Typical mode shapes
up to the 4th mode are shown in Figs. l12Za through 12d. Blade mode
shapes are normalized with respect to the blade radius at the
point of maximum deflection in either out-of-plane or inplane
bending.

5.2 Gimballed Rotor

In the case of the gimballed rotor, rotor motion is ex-
pressed by collective modes and cyclic modes (in Ref. 17 and 18).
Hence, based on Eqg. 5.1, the eigenvalue problem should be sclved
with boundary conditions for collective modes and cyclic modes
for the powered flight, respectively.

Boundary conditions for collective modes are defined to
yield symmetrical modes for flapping and lagging. Therefore,

at the root:

oY (5.4)
Vv, =0 3 Yu =0 )
oY
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at the tip:

2w, 2w

ars =0 3W:==0

SUn _ U _

v = o Sve =0 (5.5)

Boundary conditions for cyclic modes which consist of anti-
symmetrical modes for flapping motion and symmetrical modes for

lagging motion are expressed as:

at the root:

W = ZE -0
at the tip:
X |
St =0 du
ar,_:o _#ﬂd;'.'._-_-o' . (5.7)

As a typical case, the Bell design is considered here. Mass,
stiffness distributions and built-in angle of twist are shown in
Fig. B.

Blade nonrotating natural frequencies for the gimballed
rotor are shown in Fig. 13. In Fig, 13b, the first natural fre-
quency for rigid body flapping motion has non-zero natural fre-
| quency due to the rubber hub spring, which is intended to increase
control power and damping.

In Figs. 14 and 15 it is shown that collective pitch change
has a large influence on the natural frequency variation except for
the first cyclic mode natural frequency {(rigid body mode} . Mode
shapes for the gimballed rotor are shown in Figs. 16 and 17. The
normalization system is the same as that of the rigid rotor.
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5.3  Wing

The equations of motion for free vibration of the wing are
the same as Eq. 2.5, 2.6, and 2.7 when the aerodynamic forces FX,
F_, and M_ are eliminated from these equations. Boundary condi-

tions are as follows:

{(a) at the root:

Yw=0 35 =0
wh =0 oW _ o
Pe =0 >d ‘ (5.8)

{b) at the wing tip:

Mp ¥ - 35 [((EI.L piniQy +(ETu)y w36 | "g";_ﬂa=t

- -z_g'[{(EIr)c - (Hw)g} Aiw Ou coo Ow a;r:_}d L

+NMaTx + NMgf Vp =0 (5.9a)
Mp¥; - gg. [{(€10) cort0y # (1) #in o] —*55?]3

-%E[{(EIU]C *(Ens}“:"‘e"'woe'— 33135 L

+NMgvz =0 (5.9b)

Tpy vy + [ {(EL). e +(E1,)nm=e,}%‘3#]jﬂ_
+ [[(EIH} - (EI‘)B,} M eﬂ'm 6‘ 337. y=t

¥ NMBK% ""ua‘:ffa vy =0 (5.9¢)
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Lep ;'.)p + [(G&]‘%?‘-]'j“ + NMaf

va N .
+ NMed Y, + 3 I3 =0 - (5.94)

s s om0 i B8]

- [{(E‘I_Jc - (EI.—)& Ader Oy 00 B —f_g-kfx] Y=t

+ NI,V =90 '  (5.9e)

The relationship between pylon motions and wing deflecticns is
defined in Eg. 2.8. The .rotor and the pylon are treated as

lumped masses at the wing tip in these equations; as in the actual
structural dynamic test, the proprotor blades will be removed and
replaced by eguivalent weights. Note that in Eg. 5.9 the blade is
treated as a lumped mass which has eguivalent weight and equivalent

blade flapping inertia I This flapping inertia leads to lower

B*
wing freguencies, especially in torsion, than when the blade is
treated as a lumped mass with equivalent mass and without equi-

valent blade flapping inertia.

The same wing is used for the Boeing and the Bell design;
mass and stiffness properties are shown in Fig. 18, The differ-
ences appear in the pylon and blade mass properties shown in Table
i. No built-in angle of twist, dihedral angle, and sweep angle are

considered here,

‘Watural frequencies of both cases are listed in Table 1, and
mode shapes are described in Fig. 19 for the Boeing case and in
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Fig. 20 for the Bell case, Wing mode shapes are normalized with
respect to the wing semispan at the point of maximum deflection
in ejther vertical bending or in chordwise bending. However,
the mode shape corresponding to the third natural frequency of
the wing, which is predominantly one of wing torsional deflec-
tion, is normalized at the point of maximum torsional deflection,
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SECTION 6

PROPROTOR DYNAMIC CHARACTERISTICS

6.1 Introduction

L)

In this section the eigenvalues and frequency response of
the system will be discussed. The results are compared with those
of Ref. 13. The analyses  were conducted for two types of prop-
rotor design: the hingeless rotor Boeing design, and the gimballed
rotor Bell design. The case selected to be investigated is cruis-
ing flight in the airplane mode for each design. The data for the
calculation are listed in Table 1, One should notice that the
equations of motion shown in Eg. 4.57 were derived based on mass-
normalized coupled modes, However, for the sake of aiding physi-
cal understanding of the frequency response and eigenvalue analy-
sis, those results are based on physical mode shapes, as presented
in Figs, 12, 16, 17, 19, and 20,

The primary differences between the Ref. 13 analysis and
this report are tabulated below,

This Report Ref, 13
Natural Frequencies : Calculated - Experimental
Data Data
Mode Shapes
Wing Coupled Modes Uncoupled Modes
Rotor - Coupled Modes Uncoupled Elastic

Modes for Inertia
Terms; Rigid-Body
Mode for Aero=-
dynamic Terms

Structural Damping ' No Yes
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The case studies done in the present study are tabulated
below:

Degree-of-
Freedom 9 Degree-of-Freedom 18 Degree-cof-Freedom

Mode Shapes

Blade Rigid Body Uncoupled Coupled Coupled
Elastic
Wing Coupled Coupled Coupled : Coupled
Analysis Eigenvalue Eigenvalue Eigenvalue Eigenvalue
and Eigen-
vector
Fregquency

Response to
Ugr Vgr g

e1s

The general symbols Qjo' Qjc' st, and ay for hlade and wing
motions are convenient for the theoretical derivation of the equa-
tions, but from the physical understanding aspect, it would be
better to choose other symbols. For this section, except for the
eigenvalue analysis, the following system will be used to express
blade and wing motion for the 9 degree-of-freedom system: flapping
and lagging motions which are designated as g and %, respectively,
and wing motions are dyr 9y and p, which express the vertical

bending, chordwise bending, and torsion, respectively,

The correspondence between these sets of symbols is tabu-
lated below:
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New Symbols General Symbols

Bell Design Boeing Design .

B Predominant Q. Q

o Flapping aa. 20
B1c  Motionm Qe Q¢
B1s Qs Qs
L Predominant Q Q

o Lagging 10 10

' Moti
1c on Q¢ e
cls QZs le
q Wing Vertical a a
1 Bending 1 1
95 Wing Chordwise . a, a,
Bending

P Wing Torsion a, , a3

6.2 Eigenvalues and Eigenvectors

The system stability characteristics are shown in Figs. 21
through 24.

6.2.1 Addition of Higher Mode Degrees of Freedom

The eigenvalue variation with number of degrees~of-freedom
considered is shown in Fig. 21, The 9 degrees-of-freedom include
Qior Qor Qg Q07 Qor Qgr 2pr Ay and 2y {Boy Bror Bygr Lo
Sicr %1e7 T1r 9y and p) corresponding to the blade's first two
natural frequencies and the wing's first three natural frequencies.
This system has 9 eigenvalues and % corresponding eigenvectors,

The 9 eigenvalues are denoted by their frequencies, and the partici-~
pation of the degrees-of-freedom in the eigenvectors is indicated

below:
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Present Ref. 13

Eigenvalue Symbol Participation Bell Boeing
Qz Low frequency Q, B-1 r=1
Qg Collective Q, z L
QI High frequency Ql g+1 . T*l
Q; Low frequency Q, -1 R~1
Qg Collective Q, B B
Q; High frequency Qz T+l B+1
a; The first wing a4y q;
frequency

a, The second wing. 9, 94
frequency

a, The third wing P P
frequency

In the 18 degree-~of-freedom system two higher elastic
modes for the blade and three higher elastic modes for the wing
are added to the 9 degree-of-freedom system, The same designa-
tion system as used for the 9 degree-of-freedom is employed for
the higher eigenvalues. The results of the 18 degree-of-freedom
analysis show that the addition of more degrees of freedom does
not substantially influence the basic system eigenvalues since
the added degrees of freedom have large natural frequencies in
comparison with the original values (see Table 1), The 18 de-
gree-of-freedom system eigenvalue locations are shown in Fig. 22.
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6.2,2 The Sensitivity to Mode Shape

Eigenvalues and damping ratios (the fraction of the criti-
cal damping) for three different types of mode shapes for the
blade are shown in Fig. 23. One is the rigid-body mode (with
spring restraint at the root), another is the elastic uncoupled
mode, and the third is the elastic coupled mode, while the wing
mode shapes considered are restricted to the elastic coupled mode
shapes only.

The results tell that mode-shape types make negligible dif-
ference in the frequency of the eigenvalues; however, they in-
fluence the damping a lot.

In the Bell design, there is almost no difference between
the rigid mode and the elastic mode in the damping ratio. This is
due to the similarity between the rigid-body mode and the elastic
uncoupled mode. In the elastic coupled mode, a slightly higher
damping is obtained.,

In the Boeing design, each mode-shape type gives a differ-
ent damping. For the first natural frequency mode of the blade,
the rigid-body mode calculation is conservative rather than that of
the elastic coupled mode-shape type, and for the second natural
frequency mode, it is nonconservative. This is because the first
mode has both positive out-of-plane and inplane deflection, while
the second has a positive out-of-plane and a negative inplane
deflection as shown in Figs. 12 (a) and (b)}. The corresponding
positive out-of-plane deflection of the first mode increases the
damping, while the associated negative inplane deflection of the
second mode reduces the damping. This explanation also holds for
the Bell case. The damping of the second collective elastic coupled
mode of the Bell rotor is lower than that of the rigid-body mode.
The second collective mode has a positive out-of~plane deflection
and a small positive inplane deflection. However, the rotation
direction of the rotor is different for the Bell and the Boeing
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designs. Therefore, the positive inplane deflection mode of the
Bell rotor is physically the same motion as that of the first
mode of the Boeing rotor. The coordinate system related to this
is shown in Fig. 5, and the contribution to the damping of the
coupled mode shape can be seen in the term Gji in Eq. 4.33.

In conclusion, the use of the elastic coupling mode affects
the damping significantly. The coupled mode with a combination of
forward out-of-plane deflection (upward in helicopter mode) and
inplane deflection opposing the rotor direction of rotation, or
vice versa, increases the damping over that of the rigid-body-
mode calculation., The coupled mode which has forward out-of-plane
deflection and inplane deflection proceeding with rotor directicn
of rotation, or vice versa, decreases the damping., This holds
only for the first beam bending mode; in other words, the coupled
mode without nodal points between the root and the tip.

6.3 Frequency Response

The frequency responée analysis is dealt with iﬁ this sub-
section. These calculaticns are all based on mass-normalized
coupled modes for both the blade and the wing., However, for con-
venience in physical understanding, the results of the frequency
response calculation are presented in terms of length-normalized
mode shapes in Figs. 25 through 32,

6.3.1 Frequency Response to the Gust

Freguency responses to the vertical gust Usy the lateral

gust Vg and the longitudinal gust We for both the Bell and the
Boeing designs are shown in Figs. 25 through 30,

As a whole, the behavior of the frequency resgponse is quite
similar to that of Ref, 13 in spite of the differences in the theo-

retical model stated in Subsection 6.1,

The detail characteristics of the frequency response are
discussed next.
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6.,3.1,1 Blade Collective Motion Response (Bo,co)

Collective motion responses have a close relationship with
the wing motions (vertical bending qye chordwise bending, dy e and
torsion, p). They have strong resonances with these modes, 1In
the case of u. and Ve inputs, the static response (w egual to
zerc) and the lower-frequency~range response are negligible., How-

ever, the response to the longitudinal gust w. has a significant

G
static and lower frequency range response, Resonances of the col-
lective modes occur in the response to the longitudinal gust input.
Comparing the Boeing design with the Bell design, the Boeing has

a larger response in collective responses to each gust input.

6.3.1.2 Blade Cyclic Flapping Motion Response (Blc and Bls)

For the cyeclic inputs {u; and v,.)} there are not strong
resonances between cyclic flapping motions and the wing vertical
bending motion (ql). In the upper frequency range, the high fre-
guency flapping mode (8+1 mode) has a sigrnificant resonance ap-
pearing in the flapping motion. In the lower frequency range,
there is a resonance of the low frequency flapping mode (8-1 mode)
for the Boeing design and the low freqﬁency lagging mode (Z-1 mode)
for the Bell design.

For the collective input (wG) the response of the cyclic
flapping motion has resonances with the wing motion modes (ql, Ay
and p) in both designs.

6.3.1,3 Blade Cyclic Lagging Motion Response (Clc and tls)

In the Bell design. there is an evident resonance in the
cyclic lagging motion response (;lc and cls) to the vertical gust
input (uG) in proximity to the wing vertical bending mode (ql).
To the lateral gust input (vG), a low fregquency lagging mode
(z-1 mode) resonance appears in the lagging motion response.

In the Boeing design there cannot be seen such obvious

resonances in the response to the vertical and lateral gust inputs,
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The static response is much larger than that of the Bell design
due to the soft inplane design (the blade lagging natural frequency
is less than unity).

For the collective input (wG), the responses of cyclic lag-
ging motion have resonances with the wing motion modes (ql, Dy
and p) in both designs,

6.3.1,4 Wing Motion Response (ql, Ao and p)

The wing motion includes resonances in each wing meode.
Although the response magnitude is quite large, it is expected to
become rather small if structural damping is included.

6.3.2 Fregquency Response to Control Pitch Angle

Frequency responses to longitudinal cyclic pitch input are
shown in Figs,., 31 and 32,
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SECTION 7

CONCLUSIONS AND COMMENTS

7.1 Conclusions

This study has been devoted to the development and evalu-
ation of a theoretical model of the proprotor on a cantilever
wing, operating in normal cruising flight, This theory expresses
the wing and blade motions in coupled form, and c¢an include any
number of mode shapes required to express the motions accurately.
It has been applied to an investigation of the dynamic character-
istics of the Bell and the Boeing designs,

Based on the theoretical results included in this study,
the following conclusions may be stated:

(a) The choice of mode shape (rigid-body mode or elastic-
coupled mode) affects the damping significantly. The
dependency of the damping on the mode shape can be esti-
mated for the first beam bending mode. The blade inplane
deflection opposing the rotor direction of rotation,
accompanied by the forward out-of-plane deflection, in-
creases the damping, comparing it with the rigid-body
calculation. The inplane deflection proceeding in the
rotor direction of rotation decreases the damping. The
mode shape has little influence on the frequencies of
the system.

(b} The results of the frequency response are quite similar
to those of Ref. 13, in spite of the difference in the
node shapes. The amplitude of the response is slightly
different, since structural damping was not included in
the present calculation, and the mode shapes used were
different.
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(¢) The analysis of the eighteen degree-cf-freedom system showed
that the higher-frequency degrees of freedom have small
influence on the basic degrees of freedom.

7.2 Suggestions for Future Research

A direct and useful extension of the present study would be
the stability analysis of the proprotor aircraft, with respect to
air resonance and flutter. This theory will be very powerful be-
cause the eigenvector components can be compared directly without
any adjustment between components. Mach number effects of the
blade should be included for the flutter analysis.

Stresses or bending moments of the wing or blade can be pre-
dicted from the motions of the wing and blade obtained from this
analysis. In addition, this analysis may be applied to the de~
velopment of an automatic control device to alleviate the gust re-
sponse of the wvehicle,
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TABLE 1

DESCRIPTION OF THE BELL AND THE BOEING PROPROTOR
DESIGNS CONSIDERED IN THIS REPORT

BELL BOEING
ROTOR
Type gimballed, stiff cantilever, soft
inpl ane inplane
Number of
blades, N 3 3
Radius, R 156 in. 150 in.
Chord, Cg 18.9 in. 14 in,
Lock number,y 3.83 4.04
Solidity, ¢ 0.089 0.115
Pitch/flap ~15 degq. 0
coupling, 53
Collective pitch, 1,25 deg. . 1.0 deg.
BD
Lift-curve slope,a 5.7 5.7
Drag Coefficient, 0.0065 0.0065
CDO
Rotor rotation +1 -1
direction, @
Inflow ratio, A 0.7 0.7
Rotational speed, | Q] 458 RPM 386 RPM
48.9 rad/sec 40.4 rad/sec

Blade Natural Frequencies

first, 11/|n] 1.02/rev (7.78Hz) 0,827/rev.(5,32Hz)

second,J\z/m] 1,34/rev (10,2Hz) 1.32/rev {8.49Hz)

third, 13/|9| 4,35/rev (33.2Hz) 3.40/rev (21.9Hz)
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TABLE 1 CONTINUED

ROTOR (cont 'd) BELL EORING
fourth,x,/[a] 10.1/rev(77.1Hz) 6.77/xev( 43,5Hz2)
Collective Natural
Frequency
first, 2 % /|0 1.31/rev (10,0Hz)
second, A% /| 2| 2.12/rev (16.2Hz)
third, x§°’/19| ' 4.93/rev (37,7Hz)}
fourth l;o)/lﬁl 10,6/rev (80,9Hz)
Blade flapping 105 slug—ft2 150 slug--ft2
inertia, IB
One blade weight, My 133 1b 124 1b
WING
Semispan, L ' 200 in, 200 in,
Chord, <, 62,2 in, 62.2 in.
Mast height, h 51.3 in. 51.3 in.
Sweep 0 0
Dihedral 0 0
~ Lift-curve 3.7 5,7
slope, a, |
Drag coefficient, 0.004 0.004
c
Dow
Moment ccefficient Cro -0.005 -0.005
Aerodynamic center, 0.01 0.01
e =x_  /C
Aw W
Angle of attack, %0 2,0 deg 2.0 deg
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WING (cont'd)
Natural Frequencies

first,hl/lnl

second, A,/ |4}
third, A;/|%|
fourth, A, /||
gifth, A /(9]

sixth, AG/IQl

PYLON

Weight, Mp

Yaw inertia, I
' “py

Pitch inertia, I
PP

Roll inertia, Ipr

TABLE 1 CONCLUDED

BELL

0.347/rev(2.65Hz)
0.622/rev{4d,75H2)
1.09/rev{8.32Hz)
2,37/rev{18,1Hz}
3.76/rev(28.7Hz)

10.6/rev{80,9HzZ)

1420 1b
164.8 slug-ft>
190.0 slug-£t?

42.4 slug-ft2

FLIGHT CONDITION FOR CALCULATIONS, A = 0.7

Cruising speed, V
Cruising altitude

250 kt
sea level
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BOEING

0.365/rev(2,.35Hz)
0.653/rev(4,.20H2)
1.11/rev(7.14B2)
2.47/rev{15.9Hz)
3.95/rev(25,.4Hz)

12.5/rev{80.4Hz)

2000 1b
250.0 slug-ft?
250.0 slug-ft*

30.0 slug-€t2

218 kt
sea level
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APPENDIX A

DETAILED DERIVATICON OF THE EQUATIONS OF MOTION

A.l Blade Motion

The blade coordinate system is described in Section 2, and
in Figs. 2 and 3. The position vector ;ﬁdefining an arbitrary
point on the r-axis of the nth blade with respect to the inertial
X-y-z system becomes

— ¥$

?E = Yo ¥ £ -

|

| o © caﬂb% o ‘;*%' VT'“%.-tR‘i“qh
o eey bl o 1 o [{vead et
0 sty oo ¥y |- sl O ooV, Wy
(A,1)

-, ‘s . .
where r, is the position vector which expresses translation at the

wing tip as

Yz

—

Yo =1L _ , (A.2)
Yz

The square of the wvelocity at an arbitrary point on the r-

axis is expressed as

T’" o= (ra) + Wt ¢ U+ Qi) +r
4D 4 (R rtestd,)
1 (R 4+ vtadtd) Vg T 2rQ
=270 Y s, - 287 Q v, i,
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vtV ~ Qr‘.ﬂ.\{,j ‘.)P - 2rQ V), Wi sl
— 2 fremd, — 28 Q ULV, coodd,

—2Va U, adedy -2 B D), sind 127000,
r2h vy — v v ¥y s,

- 2v QL vy Voo dh, — 2Rv UV acn

4 210 Yy Yy sin P, cood,

-2V MV s, oo, -2 RV D, oot
_z’&r.ﬂ.% cooch‘ -2vS) uf;‘;)’ cooc,
-28r,. \')3 cood, 4 2 Rv Sl ;)am:ud’.‘

- 289 O condh +2£.SLJ“;23 b P

- 2v3() Wy Yy pind, cood, +2 T3
- 2v gy eend, 2y, D:[ ain

—ov vz vp erob + 200V, Tz simch,
F2r ¥z Yy adeth, +2va o V2 sind,

- 2r:0V, Vp sdet, cavdh,

- aribs Y sden P conch,

+2v3i} Yy ‘.’r oim b, cootd, (a.3)

The total kinetic energy TE for N blades is expressed as

L]
o) ol i
- I 3 ) |'* -~

nul

where m is the blade mass per unit length.
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The potential energy UE of N blades is

R
e =¥ 3 | {reme ey + (om0l ](a*’*

+ [(EDp sin2Bn + (EX), <o ceste) (5)
) : 3w é”-'- ar
+ LCED. ~(ET)a) picBp oo 52 } (a.5)

The virtual work done by the centrifugal forces SWCF is

described as

S = 3 [ [ (v 25 3 + (v 38) Sl .o

A.2 The Work Done by Blade Aerodynamic Forces

Aerodynamic forces acting on the nth blade (f)n are derived
in the z-y-z coordinate system from the P, and Py components ‘

as
[ R
‘ _\"’r ‘)P -— fg M-.«n-({lu
—p
(F-)u'-"' \)y' i - 5 ] 'EB coa C'J“
v % Pz (A.7)

Then the virtual work done by the aerodynamic forces of all blades
GWAF is described as ‘
' R

N O | '
SWAF""""Z Sﬂ Sr;l .(F)" ar ' (A.8)

uxi
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A.3 Lagrange's Equations

In addition to the above, the kinetic energy and potential
energy of the wing derived from the simple beam theory are append-
ed.

Then, Lagrange's equations are given by

.4_(_3.1 2T L 22U _ a: (A.9)
&t 'a«'gi) 2% MY @

where T, U and Qi are respectively, the total kinetic energy, po-
tential energy and generalized forces of the system, and

%C-—-“rn,‘r“, Y'q_/f}, ‘)U’Vf’ Vr'_, u.,,""n {(1.10)

ot Pw
Finally, the above represents the derivation of Eqs. 2.4,
2.5, 2.6, 2.7, 2.8, 2.10, 2.11, 2.12, 2.13, and 2.14.
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o
APPENDIX B

;/

STRESS ANALYSIS OF THE ROTOR BLADE AND THE WING

In this appendix, the method of deriving the stresses in
.the rotor blades and in the wing due to the gust are briefly
stated. If the deformation of an elastic structure has been de-
termined, it is a straightforward procedure to determine the
stresses corresponding to this deformation. The mode acceleration
method discussed in Ref. 15 is very suitable because the stresses
can be determined accurately and directly when the deformation has
been computed in terms of displacements of normal modes. -

Equation 4.57 is written here again in matrix form as

(AT{x} + []{x] + [c]{x} = [D}{e} + {F] (5.1)

where [A], [B] and [C] are sguare matrices to define the coeffi-
cients of equations derived from mass, stiffness and aerodynamic
forces, and the [D] matrix is the excitation. The generalized
coordinates {x} and excitation input {e} are

Q6
‘am ruﬁ
Ql! .U-q
a
{‘1} = J :n J {e';* & \ (B.2)

X 0 [
G Gt:_

\.g: ) 5(951

The static force {F} from the lift or drag of. the wing and rotor

in steady flight may be included if the total stresses are .reguired.
When only the additional stress due to the gust or contrel input
varying with time is required, the {F} matrix may be dropped.
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In general, the stress at a particular point p in thg rotor

wing structure is expressed by

{o3} = [APH"‘} (8.3)

" where the [Ap] matrix is a constant matrix that represents the
stress at the point p due to a unit displacement in the normal
mode,

The static mode displacements are given by setting {%} = 0
and {%} = 0 in Eq. B.1l.

{'x}‘hﬁc = [CT‘ [0} {e} + [CT‘ l"-} (B.4)
Therefore, the static stress becomes

{%}s‘t'at'ic. = [AP-_\ {x} static : (B.5)

"When the rotor and wing are vibrating, the total displacements of

the rotor or wing can be expressed as
[x} = Lc1" [D)e} + L[] {F}
- [c17'[A] {;E} ~feT' (B3 (B.6)

Substituting Eqs.B.5 and B.6 into Eq. B.3, the total stress be-

(o8] = {% batatic - [Ar) LT [AT 1T}
- [Ad[e]) " [B]{x} (B.7)

This result gives the stress in the rotor or wing at any instant
in terms of the static stress and an additional stress due to
the vibration.
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